Embodiment Comfort Levels During Motor Imagery Training Combined With Immersive Virtual Reality in a Spinal Cord Injury Patient

Front Hum Neurosci. 2022 May 20:16:909112. doi: 10.3389/fnhum.2022.909112. eCollection 2022.

Abstract

Brain-machine interfaces combining visual, auditory, and tactile feedback have been previously used to generate embodiment experiences during spinal cord injury (SCI) rehabilitation. It is not known if adding temperature to these modalities can result in discomfort with embodiment experiences. Here, comfort levels with the embodiment experiences were investigated in an intervention that required a chronic pain SCI patient to generate lower limb motor imagery commands in an immersive environment combining visual (virtual reality -VR), auditory, tactile, and thermal feedback. Assessments were made pre-/ post-, throughout the intervention (Weeks 0-5), and at 7 weeks follow up. Overall, high levels of embodiment in the adapted three-domain scale of embodiment were found throughout the sessions. No significant adverse effects of VR were reported. Although sessions induced only a modest reduction in pain levels, an overall reduction occurred in all pain scales (Faces, Intensity, and Verbal) at follow up. A high degree of comfort in the comfort scale for the thermal-tactile sleeve, in both the thermal and tactile feedback components of the sleeve was reported. This study supports the feasibility of combining multimodal stimulation involving visual (VR), auditory, tactile, and thermal feedback to generate embodiment experiences in neurorehabilitation programs.

Keywords: brain–machine (computer) interface; comfort and human perception; embodiment/bodily experience; spinal cord injured (SCI); tactile; thermal; virtual reality.