Design and simulation of DNA, RNA and hybrid protein-nucleic acid nanostructures with oxView

Nat Protoc. 2022 Aug;17(8):1762-1788. doi: 10.1038/s41596-022-00688-5. Epub 2022 Jun 6.

Abstract

Molecular simulation has become an integral part of the DNA/RNA nanotechnology research pipeline. In particular, understanding the dynamics of structures and single-molecule events has improved the precision of nanoscaffolds and diagnostic tools. Here we present oxView, a design tool for visualization, design, editing and analysis of simulations of DNA, RNA and nucleic acid-protein nanostructures. oxView provides an accessible software platform for designing novel structures, tweaking existing designs, preparing them for simulation in the oxDNA/RNA molecular simulation engine and creating visualizations of simulation results. In several examples, we present procedures for using the tool, including its advanced features that couple the design capabilities with a coarse-grained simulation engine and scripting interface that can programmatically edit structures and facilitate design of complex structures from multiple substructures. These procedures provide a practical basis from which researchers, including experimentalists with limited computational experience, can integrate simulation and 3D visualization into their existing research programs.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • DNA / chemistry
  • Nanostructures* / chemistry
  • Nucleic Acid Conformation
  • Nucleic Acids*
  • RNA / chemistry
  • Software

Substances

  • Nucleic Acids
  • RNA
  • DNA