Evaluation of quantitative accuracy among different scatter corrections for quantitative bone SPECT/CT imaging

PLoS One. 2022 Jun 6;17(6):e0269542. doi: 10.1371/journal.pone.0269542. eCollection 2022.

Abstract

Although scatter correction improves SPECT image contrast and thus image quality, the effects of quantitation accuracy under various conditions remain unclear. The present study aimed to empirically define the conditions for the optimal scatter correction of quantitative bone SPECT/CT images. Scatter correction was performed by applying dual and triple energy windows (DEW and TEW) with different sub-energy window widths, and effective scatter source estimation (ESSE) to CT-based scatter correction. Scattered radiation was corrected on images acquired using a triple line source (TLSP) phantom and an uniform cylinder phantom. The TLSP consisted of a line source containing 74.0 MBq of 99mTc in the middle, and a background component containing air, water or a K2HPO4 solution with a density equivalent to that of bone. The sum of all pixels in air, water and the K2HPO4 solution was measured on SPECT images. Scatter fraction (SF) and normalized mean square error (NMSE) based on counts from the air background as a reference were then calculated to assess quantitative errors due to scatter correction. The uniform cylinder phantom contained the same K2HPO4 solution and 222.0 MBq of 99mTc. The coefficient of variation (CV) was calculated from the count profile of this phantom to assess the uniformity of SPECT images across scatter correction under various conditions. Both SF and NMSE in SPECT images of phantoms containing water in the background were lower at a TEW sub-window of 3% (TEW3%), than in other scatter corrections, whereas those in K2HPO4 were lower at a DEW sub-window of 20% (DEW20%). Larger DEW and smaller TEW sub-energy windows allowed more effective correction. The CV of the uniform cylinder phantom, DEW20%, was inferior to all other tested scatter corrections. The quantitative accuracy of bone SPECT images substantially differed according to the method of scatter correction. The optimal scatter correction for quantitative bone SPECT was DEW20% (k = 1), but at the cost of slightly decreased image uniformity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Phantoms, Imaging
  • Scattering, Radiation
  • Single Photon Emission Computed Tomography Computed Tomography*
  • Tomography, Emission-Computed, Single-Photon* / methods
  • Water

Substances

  • Water

Grants and funding

This work was supported in part by KAKENHI Grant-in-Aid for Young Scientists (B) (No. 16K19831) and from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japanese Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.