Reversible Photochromic Photonic Crystal Device with Dual Structural Colors

ACS Appl Mater Interfaces. 2022 Jun 29;14(25):29070-29076. doi: 10.1021/acsami.2c03771. Epub 2022 Jun 6.

Abstract

Photonic crystal (PhC) light emitter (PC-LE) devices attract extensive attention in anticounterfeiting for their manipulated light emission and iridescent structural color, but their large-scale three-dimensional fabrication is still limited by poor mechanical strength and microstructural defects. Herein, colloidal nanospheres incorporated with photoluminescent dye were assembled to three-dimensional PC-LE devices through a large-scale compressing-induced strategy, which realized dual iridescent and reversible photochromic colors. Periodically distributed refractive indices between molten molecular chains and cross-linked nanospheres generated the iridescent structural color. Subsequently, the device surface reflected another different structural color after partially removing the surface molecular chains by etching. The light emission intensity of the dye was sufficient to obtain the reversible photochromic colors. Simultaneously, the manipulation toward light emission of the photonic band gap achieved the shape of the photoluminescent intenstiy spectra that varied in accordance with the reflective peak. Furthermore, by use of screen-printing tools and transparent masking glue, the etching process became an inkless color printing process, generating a colorful bar code (2 cm × 2 cm) on the device surface. The code was reversibly displayed and encrypted through control of the reflection and emission of light. Significantly, the PC-LE devices opened up a new route for advanced display, color printing, and anticounterfeiting stickers.

Keywords: anticounterfeiting; photoluminescence; photonic crystal; structural color; three-dimensional device.