Synthesis of Smart Nanofiber Coatings with Autonomous Self-Warning and Self-Healing Functions

ACS Appl Mater Interfaces. 2022 Jun 6. doi: 10.1021/acsami.2c05048. Online ahead of print.

Abstract

Organic protective coatings are widely used to protect metal structures from corrosion but they are vulnerable to undetectable damage. Without timely detection and repair, it could lead to severe consequences. How to warn and heal damaged areas simultaneously and automatically has become a challenging problem. Herein, we report an intelligent protective coating with self-warning and self-healing functions. This strategy was achieved by embedding bifunctional nanofibers containing 1,10-phenanthroline (Phen) in organic coatings. The nanofibers with Phen as a core and a poly(vinyl alcohol) (PVA)─chitosan (CS) blend solution as a shell were synthesized by coaxial electrospinning. The PVA/CS@Phen nanofiber-embedded coating displayed self-healing and high contrast indication function of the damaged area on coatings. Prominent red could warn microdamage and macrosurface damage, which occurred rapidly and healed permanently. The intelligent coating exhibited high healing performance under artificial injury with self-warning characteristics, and the cure rate was about 98.4% without external intervention. In the healing process, free amino groups of CS in the shell of nanofibers enhanced the sustained release of Phen. This convenient, economical, and efficient strategy with cooperative functions of self-warning and self-healing delivers an effective solution for prolonging the service life of protective coatings. This multifunctional coating exhibits excellent potential in the field of marine engineering applications.

Keywords: coating; color change; damage detection; electrospinning; self-healing; self-warning.