Transformation of Plant to Resource Acquisition Under High Nitrogen Addition Will Reduce Green Roof Ecosystem Functioning

Front Plant Sci. 2022 May 17:13:894782. doi: 10.3389/fpls.2022.894782. eCollection 2022.

Abstract

Ecosystem engineering, such as green roof, provides numerous key ecosystem functions dependent on both plants and environmental changes. In the recent years, global nitrogen (N) deposition has become a hot topic with the intensification of anthropogenic disturbance. However, the response of green roof ecosystems to N deposition is still not clear. To explore the effects of N addition on plant ecological strategy and ecosystem functioning (biomass), we conducted a 3-month N addition simulation experiment using 12 common green roof species from different growth forms on an extensive green roof in Tianjin, China. The experiment included three different N addition treatments (0, 3.5, and 10.5 gN m-2 year-1). We found that plants with the resource-acquisitive strategy were more suitable to survive in a high N environment, since both aboveground and belowground traits exhibited synergistic effects. Moreover, N addition indirectly decreased plant biomass, indicating that ecosystem functioning was impaired. We highlight that there is a trade-off between the survival of green roof species and keeping the ecosystem functioning well in the future N deposition. Meanwhile, these findings also provide insights into how green roof species respond to global climate change and offer important information for better managing and protecting similar ecosystem engineering in the background of high N deposition.

Keywords: ecosystem functioning; green roof; nitrogen deposition; plant functional traits; resource acquisition strategy; trait plasticity.