Methylamine Lithium Borohydride as Electrolyte for All-Solid-State Batteries

Angew Chem Int Ed Engl. 2022 Aug 8;61(32):e202203484. doi: 10.1002/anie.202203484. Epub 2022 Jun 21.

Abstract

Fast Li-ion conductivity at room temperature is a major challenge for utilization of all-solid-state Li batteries. Metal borohydrides with neutral ligands are a new emerging class of solid-state ionic conductors, and here we report the discovery of a new mono-methylamine lithium borohydride with very fast Li+ conductivity at room temperature. LiBH4 ⋅CH3 NH2 crystallizes in the monoclinic space group P21 /c, forming a two-dimensional unique layered structure. The layers are separated by hydrophobic -CH3 moieties, and contain large voids, allowing for fast Li-ionic conduction in the interlayers, σ(Li+ )=1.24×10-3 S cm-1 at room temperature. The electronic conductivity is negligible, and the electrochemical stability is ≈2.1 V vs Li. The first all-solid-state battery using a lithium borohydride with a neutral ligand as the electrolyte, Li-metal as the anode and TiS2 as the cathode is demonstrated.

Keywords: Complex Hydrides; Energy Storage; Li-Metal Batteries; Solid-State Batteries; Solid-State Electrolytes.