Optimization of the heterologous expression and purification of Plasmodium falciparum generative cell specific 1 in Escherichia coli

Protein Expr Purif. 2022 Oct:198:106126. doi: 10.1016/j.pep.2022.106126. Epub 2022 May 31.

Abstract

Generative cell specific 1 (GCS1) or Hapless2 (Hap2) is a main transmission-blocking vaccine (TBV) candidate against malaria. Experience has shown that this protein is difficult to express in heterologous hosts. In a study, Plasmodium falciparum GCS1 (PfGCS1) could be expressed in fusion with Glutathione S Transferase (GST). Since the large fusions could influence the immunogenicity of the recombinant antigens, in the current study, we tried to express PfGCS1 protein without large fusion tags with an appropriate yield and purity in E. coli. To this end, pfgcs1 gene was codon-optimized and cloned in pET23a plasmid. The expression was evaluated in different E. coli hosts [E. coli BL21(DE3), E. coli BL21(DE3) pLysS, E. coli Rosetta(DE3), and E. coli Rosettagami(DE3)] and media cultures. In addition, the effect of post-induction times, inducer concentration, temperature, and supplementation of glucose and ethanol to culture media were evaluated. The obtained results revealed that rPfGCS1 protein was expressed in all examined E. coli hosts and media cultures with different yields, with the best yield in E. coli BL21(DE3), and E. coli Rosetta(DE3) hosts in TB medium, 16 h post-induction. The expression of rPfGCS1 was confirmed by western blotting using anti-His antibodies. Expression in low temperature at 20 °C and addition of glucose and ethanol to TB media could improve the expression of rPfGCS1. We could express and purify rPfGCS1 without a large fusion protein with an appropriate yield and purity in E. coli Rosetta(DE3). We will evaluate this antigen as TBV candidate against P. falciparum transmission in the future.

Keywords: Malaria vaccine; Plasmodium falciparum generative cell specific 1 (GCS1); Protein expression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Infections*
  • Ethanol / metabolism
  • Glucose / metabolism
  • Humans
  • Malaria, Falciparum*
  • Plasmodium falciparum / genetics
  • Plasmodium falciparum / metabolism
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism

Substances

  • Recombinant Fusion Proteins
  • Recombinant Proteins
  • Ethanol
  • Glucose