Transcriptional profiling from whole embryos to single neuroblast lineages in Drosophila

Dev Biol. 2022 Sep:489:21-33. doi: 10.1016/j.ydbio.2022.05.018. Epub 2022 Jun 1.

Abstract

Embryonic development results in the production of distinct tissue types, and different cell types within each tissue. A major goal of developmental biology is to uncover the "parts list" of cell types that comprise each organ. Here we perform single cell RNA sequencing (scRNA-seq) of the Drosophila embryo to identify the genes that characterize different cell and tissue types during development. We assay three different timepoints, revealing a coordinated change in gene expression within each tissue. Interestingly, we find that the elav and Mhc genes, whose protein products are widely used as markers for neurons and muscles, respectively, show broad pan-embryonic expression, indicating the importance of post-transcriptional regulation. We next focus on the central nervous system (CNS), where we identify genes whose expression is enriched at each stage of neuronal differentiation: from neural progenitors, called neuroblasts, to their immediate progeny ganglion mother cells (GMCs), followed by new-born neurons, young neurons, and the most mature neurons. Finally, we ask whether the clonal progeny of a single neuroblast (NB7-1) share a similar transcriptional identity. Surprisingly, we find that clonal identity does not lead to transcriptional clustering, showing that neurons within a lineage are diverse, and that neurons with a similar transcriptional profile (e.g. motor neurons, glia) are distributed among multiple neuroblast lineages. Although each lineage consists of diverse progeny, we were able to identify a previously uncharacterized gene, Fer3, as an excellent marker for the NB7-1 lineage. Within the NB7-1 lineage, neurons which share a temporal identity (e.g. Hunchback, Kruppel, Pdm, and Castor temporal transcription factors in the NB7-1 lineage) have shared transcriptional features, allowing for the identification of candidate novel temporal factors or targets of the temporal transcription factors. In conclusion, we have characterized the embryonic transcriptome for all major tissue types and for three stages of development, as well as the first transcriptomic analysis of a single, identified neuroblast lineage, finding a lineage-enriched transcription factor.

Keywords: Embryonic cell type; Eve; GMC; HGTX; Motor neuron; Neuroblast; Nkx6; Single cell RNAseq; Temporal identity; Temporal transcription factor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Lineage / genetics
  • Central Nervous System / metabolism
  • Drosophila
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Gene Expression Regulation, Developmental / genetics
  • Motor Neurons
  • Neural Stem Cells*
  • Transcription Factors / metabolism

Substances

  • Drosophila Proteins
  • Transcription Factors