Synthesizing evidence from clinical trials with dynamic interactive argument trees

J Biomed Semantics. 2022 Jun 3;13(1):16. doi: 10.1186/s13326-022-00270-8.

Abstract

Background: Evidence-based medicine propagates that medical/clinical decisions are made by taking into account high-quality evidence, most notably in the form of randomized clinical trials. Evidence-based decision-making requires aggregating the evidence available in multiple trials to reach -by means of systematic reviews- a conclusive recommendation on which treatment is best suited for a given patient population. However, it is challenging to produce systematic reviews to keep up with the ever-growing number of published clinical trials. Therefore, new computational approaches are necessary to support the creation of systematic reviews that include the most up-to-date evidence.We propose a method to synthesize the evidence available in clinical trials in an ad-hoc and on-demand manner by automatically arranging such evidence in the form of a hierarchical argument that recommends a therapy as being superior to some other therapy along a number of key dimensions corresponding to the clinical endpoints of interest. The method has also been implemented as a web tool that allows users to explore the effects of excluding different points of evidence, and indicating relative preferences on the endpoints.

Results: Through two use cases, our method was shown to be able to generate conclusions similar to the ones of published systematic reviews. To evaluate our method implemented as a web tool, we carried out a survey and usability analysis with medical professionals. The results show that the tool was perceived as being valuable, acknowledging its potential to inform clinical decision-making and to complement the information from existing medical guidelines.

Conclusions: The method presented is a simple but yet effective argumentation-based method that contributes to support the synthesis of clinical trial evidence. A current limitation of the method is that it relies on a manually populated knowledge base. This problem could be alleviated by deploying natural language processing methods to extract the relevant information from publications.

Keywords: Aggregation of clinical trial evidence; Argument-based systems; Evidence synthesis; Systematic review automation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Evidence-Based Medicine*
  • Humans
  • Research Design
  • Systematic Reviews as Topic
  • Trees*