Optically Encodable and Erasable Multilevel Nonvolatile Flexible Memory Device Based on Metal-Organic Frameworks

ACS Appl Mater Interfaces. 2022 Jun 15;14(23):26895-26903. doi: 10.1021/acsami.2c02440. Epub 2022 Jun 3.

Abstract

Multilevel and flexible nonvolatile memory (NVM) is a promising candidate for data storage in next-generation devices but its high bias and low mobility of conducting channels are often its drawbacks. In this study, we demonstrate a low bias of smaller than 0.1 V and a high-mobility graphene layer as a conducting channel for flexible optoelectronic NVM based on a composite thin film of indium-based MOF-derived InCl3 and 4,4-oxydiphthalic anhydride (odpta), Na[In3(odpt)2(OH)2(H2O)2](H2O)4, and reduced graphene oxide (rGO). The optoelectronic NVM device can be encoded and erased optically by ultraviolet (UV) light and visible light, respectively. Our device also achieves memory states over 192 (6-bit storage) distinct levels, which can emerge as mass data storage. It also shows an excellent endurance of write-erase cycles under irradiation with a laser of varying wavelengths, the mechanical stability of more than 1000 bending cycles, and stable retention for longer than 10 000 s. These results open an alternative route for developing low bias and innovative optoelectronic technologies.

Keywords: flexible memory; metal−organic framework; nanocomposite; nonvolatile memory; reduced graphene oxide (rGO).