Evolution and Single-Droplet Analysis of Fuel-Driven Compartments by Droplet-Based Microfluidics

Angew Chem Int Ed Engl. 2022 Aug 8;61(32):e202203928. doi: 10.1002/anie.202203928. Epub 2022 Jun 24.

Abstract

Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet-based microfluidics to encapsulate a fuel-driven cycle that drives phase separation into coacervate-based droplets to overcome this challenge. This approach enables the analysis of every coacervate-based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate-based droplets and their properties. We observed that coacervate-based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate-based droplets enables future selection- or evolution-based studies.

Keywords: Artificial Organelles; Droplet-Based Microfluidics; Nonequilibrium Processes; Phase Transitions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Kinetics
  • Microfluidics* / methods