Differences in Lipid Profiles and Atherogenic Indices Between Hypertensive and Normotensive Populations: A Cross-Sectional Study of 11 Chinese Cities

Front Cardiovasc Med. 2022 May 17:9:887067. doi: 10.3389/fcvm.2022.887067. eCollection 2022.

Abstract

Background: Several previous studies have reported that dyslipidemia is associated with the risk of hypertension, but these studies are mainly conducted in European and US populations, with a very few studies in the Asian population. Moreover, the effects of atherosclerotic indices, including atherogenic coefficient (AC) and atherogenic risk of plasma (AIP), on hypertension in Asians have not been well described so far.

Methods: From 2010 to 2016, altogether 211,833 Chinese adults were ultimately recruited at the health centers in 11 Chinese cities (including Shanghai, Beijing, Nanjing, Suzhou, Shenzhen, Changzhou, Chengdu, Guangzhou, Hefei, Wuhan, and Nantong). Differences in continuous variables between the two groups were analyzed by the Mann-Whitney test, while those in categorical variables were examined by the Chi-squared test. Logistic regression was applied to evaluate the association between lipid profiles and the risk of hypertension. The predictive values of AC and AIP for the incidence of hypertension were analyzed using the area under the receiver operating characteristic (ROC) curve. Meanwhile, Bayesian network (BN) models were performed to further analyze the associations between the different covariates and the incidence of hypertension.

Results: A total of 117,056 participants were included in the final analysis. There were significant differences in baseline characteristics between normotension and hypertension groups (p < 0.001). In multivariate logistic regression, the risk of hypertension increased by 0.2% (1.002 [1.001-1.003]), 0.2% (1.002 [1.001-1.003]), and 0.2% (1.002 [1.001-1.003]) per 1 mg/dl increase in total cholesterol (TC), low-density lipoprotein (LDL), and non-high-density lipoprotein cholesterol (non-HDL-c), respectively. However, after adjusting for body mass index (BMI), an increase in HDL level was associated with a higher risk of hypertension (p for a trend < 0.001), and the risk of hypertension increased by 0.6% per 1 mg/dl increase in HDL-c (1.006 [1.003-1.008]). In women, AC had the highest predictive value for the incidence of hypertension with an area under the curve (AUC) of 0.667 [95% confidence interval (CI): 0.659-0.674]. BN models suggested that TC and LDL were more closely related to the incidence of hypertension.

Conclusions: Overall, lipid profiles were significantly abnormal in the hypertensive population than in the normotensive population. TC and LDL were strongly associated with the incidence of hypertension. TC, LDL, and non-HDL-c levels show a positive association, HDL-c shows a negative association, while TG is not significantly associated with the risk of hypertension. After adjusting for BMI, HDL-c turns out to be positively associated with the risk of hypertension. In addition, AC has a good predictive value for the incidence of hypertension in women.

Keywords: Bayesian network model; high-density lipoprotein cholesterol; hypertension; lipid; low density lipoprotein; total cholesterol; triglycerides.

Associated data

  • Dryad/10.5061/dryad.ft8750v