Hierarchical Porous Nanocellulose Aerogels Loaded with Metal-Organic Framework Particles for the Adsorption Application of Heterocyclic Aromatic Amines

ACS Appl Mater Interfaces. 2022 Jun 29;14(25):29131-29143. doi: 10.1021/acsami.2c03800. Epub 2022 Jun 2.

Abstract

This work overcomes the long-standing challenge of cumbersome pretreatment methods in the detection of heterocyclic aromatic amines (HAAs). A UiO-66/nanocellulose composite aerogel (CMC-CNC-UiO-66) with layered pores and low density prepared by a self-cross-linking method is applied as a simple and rapid adsorbent for capturing 14 HAAs via strong electrostatic interactions, van der Waals force, and the steric effect. The adsorption capacity of CMC-CNC-UiO-66 to 14 HAAs reached 98.00-188.00 nmol/mg at equilibrium within 10 min. The adsorption and desorption abilities of CMC-CNC-UiO-66 were retained with values of 93.36 and 97.34% after two cycles. In the meantime, the kinetics study demonstrated the chemisorption between HAA molecules and CMC-CNC-UiO-66 due to the excellent agreement with the pseudo-second-order adsorption models. The fit with the Freundlich isotherm models suggested a multilayer adsorption mechanism between HAA molecules and materials with heterogeneous surfaces. Moreover, coupled with the ultrahigh-performance liquid chromatography-tandem mass spectrometry detection, the CMC-CNC-UiO-66 extraction process can be completed with a high average recovery ranging from 86.68 to 115.33%, indicating a potential application of CMC-CNC-UiO-66 in HAA adsorption for further quantitative analysis.

Keywords: heterocyclic aromatic amines; metal−organic frameworks; nanocellulose aerogels; rapid adsorption; self-cross-linking.