Bioinspired Ice Growth Inhibitors Based on Self-Assembling Peptides

ACS Macro Lett. 2019 Oct 15;8(10):1383-1390. doi: 10.1021/acsmacrolett.9b00610. Epub 2019 Oct 3.

Abstract

Antifreeze proteins (AFPs) are widely found in organisms living in subzero environments. Their strong ability to inhibit ice growth and recrystallization have inspired considerable bioinspired efforts to engineer artificial ice growth inhibitors for cryopreservation. However, it remains challenging to engineer biocompatible and cost-effective synthetic ice growth inhibitors to meet the increasing needs of cryoprotectants in biomedical research and industry. Here we report the design of artificial ice growth inhibitors based on self-assembling peptides. We demonstrate the importance of threonine residues as well as their spatial arrangement for effective ice binding. The engineered self-assembling ice growth inhibiting peptides show moderate ice inhibiting activity including suppression of ice growth rates and retardation of recrystallization of ice crystals. The applications of these peptides in cryopreservation of enzymes and cells were also demonstrated.