Design and Characterization of a PVLA-PEG-PVLA Thermosensitive and Biodegradable Hydrogel

ACS Macro Lett. 2017 Oct 17;6(10):1134-1139. doi: 10.1021/acsmacrolett.7b00523. Epub 2017 Sep 28.

Abstract

A set of poly(δ-valerolactone-co-d,l-lactide)-b-poly(ethylene glycol)-b-poly(δ-valerolactone-co-d,l-lactide) (PVLA-PEG-PVLA) triblock copolymers was synthesized and the solution properties were characterized using rheology, cryo-TEM, cryo-SEM, SANS, and degradation studies. This polymer self-assembles into a low viscosity fluid with flowerlike spherical micelles in water at room temperature and transforms into a wormlike morphology upon heating, accompanied by gelation. At even higher temperatures syneresis is observed. At physiological temperature (37 °C) the hydrogel's average pore size is around 600 nm. The PVLA-PEG-PVLA gel degrades in about 45 days in cell media, making this unique hydrogel a promising candidate for biomedical applications.