Zinc Coordination Substitute Amine: A Noncationic Platform for Efficient and Safe Gene Delivery

ACS Macro Lett. 2018 Jul 17;7(7):868-874. doi: 10.1021/acsmacrolett.8b00374. Epub 2018 Jul 2.

Abstract

Amines have been extensively involved in vector design thus far, however, their clinical translation has been impeded by several obstacles: cytotoxicity, polyplex serum instability and low efficacy in vivo. In pursuit of functional groups to substitute amines in vector design to address these disadvantages is of great significance. Herein, we report well-tailored noncationic copolymers that contain hydrophilic, hydrophobic, and zinc coordinative moieties through reversible addition-fragmentation chain transfer (RAFT) polymerization for efficient and safe gene delivery. These polymers are capable of condensing DNA, enabling the formation of uncharged polyplexes. Especially, the zinc coordinative ligand can simultaneously benefit strong DNA binding, robust cellular uptake, efficacious endosomal destabilization, low cytotoxicity, and avoidance of serum protein adsorption. The coordinative module holds great promise to substitute amines and inspires the development of next-generation gene vectors. More importantly, the coordinative copolymers illuminate the possibility and potential of noncationic gene delivery systems for clinical applications.