Vaginal microbiota signatures in healthy and purulent vulvar discharge sows

Sci Rep. 2022 Jun 1;12(1):9106. doi: 10.1038/s41598-022-13090-8.

Abstract

Purulent vulvar discharges, primarily caused by genito-urinary tract infections, are an important source of economic loss for swine producers due to sow culling and mortality. However, the agents that compose the vaginal microbiota of sows and their changes during infections are not well understood. The first goal of this study was to characterize and compare the vaginal bacterial content of healthy (HE, n = 40) and purulent vulvar discharge sows (VD, n = 270) by a culture-dependent method and MALDI-TOF MS identification. Secondly, we performed 16S rRNA targeted metagenomic approach (n = 72) to compare the vaginal microbiota between these groups. We found a wide variety of bacteria, with Proteobacteria, Firmicutes, and Bacteroidota being the most abundant phyla in both groups, as well as Escherichia-Shigella, Streptococcus, and Bacteroides at the genus level. Most agents identified in the sequencing method also grew in the culture-dependent method, showing the viability of these bacteria. Alpha diversity did not differ between HE and VD sows, regarding sample richness and diversity, but a beta-diversity index showed a different microbiota composition between these groups in two tested herds. ANCOM analysis revealed that Bacteroides pyogenes were more abundant in VD females and can be a marker for this group. Other agents also require attention, such as the Streptococcus dysgalactiae and Staphylococcus hyicus found in remarkably greater relative abundance in VD sows. Network analysis revealed important positive correlations between some potentially pathogenic genera, such as between Escherichia-Shigella, Trueperella, Streptococcus, Corynebacterium, and Prevotella, which did not occur in healthy sows. We conclude that the alteration of the vaginal microbiota between healthy and purulent vulvar discharge sows, although not extreme, could be due to the increase in the relative abundance of specific agents and to associations between potentially pathogenic bacteria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria / genetics
  • Female
  • Humans
  • Microbiota*
  • RNA, Ribosomal, 16S / genetics
  • Swine
  • Vagina* / microbiology
  • Vulva

Substances

  • RNA, Ribosomal, 16S