Effects of habitat homogenisation on assemblages associated with mussel clumps

PLoS One. 2022 Jun 1;17(6):e0269308. doi: 10.1371/journal.pone.0269308. eCollection 2022.

Abstract

Biodiversity loss is considered one of the main threats to marine ecosystems. In this framework of biodiversity decline, organisms that provide biogenic habitat play a relevant role by their capacity to structure assemblages and influence ecological processes. The Mediterranean mussel Mytilus galloprovincialis is considered an ecosystem engineer because it alters local environmental conditions maintaining habitat suitability for other organisms, and enhancing local biodiversity. Although it is widely recognized that mussel beds increase diversity, the drivers shaping these assemblages are poorly explored. We investigate whether mussel size homogenisation shapes the abundance, richness and structure of macrobenthic assemblages associated with mussel beds in two shores of the Galician coast (NW Spain). At each shore, two sites, 10 m apart, were selected and at each site, faunal assemblages were compared between mussel clumps showing shells of various sizes (control), and mussel clumps with closely similar-sized mussels, considered as homogenised. Homogenised clumps showed, in general, higher values in total number of individuals and species than control clumps. Regarding the effect of mussel size homogenisation on the multivariate structure of the assemblages, significant differences between control and homogenised clumps were found in three out of the four sites. Most relevant associated species usually reached higher abundances in homogenised clumps than control ones. Therefore, mussel size homogenisation influenced the structure of the macrofaunal assemblages associated with mussel beds but, its effect was context dependent (i.e., varied with sites). Information about the species contribution to dissimilarities among homogenised and control clumps was provided and the potential influence of sediment and algae on mussel clumps was discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodiversity
  • Ecosystem*
  • Humans
  • Mytilus*
  • Seafood
  • Spain

Grants and funding

This research was developed under the Project No. 30181 (PTDC/CTA-AMB/30181/2017), co-financed by COMPETE 2020, Portugal 2020 and the European Union through the ERDF, and by FCT-Foundation for Science and Technology through national funds within the scope of UIDB/04423/2020 and UIDP/04423/2020. P. Veiga was hired through the Regulamento do Emprego Científico e Tecnológico—RJEC from the Portuguese Foundation for Science and Technology (FCT) program (CEECIND/03893/2018). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.