Glycosyltransferase-Induced Morphology Transition of Glycopeptide Self-Assemblies with Proteoglycan Residues

ACS Macro Lett. 2020 Jul 21;9(7):929-936. doi: 10.1021/acsmacrolett.0c00306. Epub 2020 Jun 9.

Abstract

We previously proposed the deprotection-induced block copolymer self-assembly (DISA), that is, the deprotection of hydroxyl groups of saccharides resulted in self-assembly of glycopolymers (Qi et al. J. Am. Chem. Soc. 2018, 140 (28), 8851-8857 and Su et al. ACS Macro Lett. 2014, 3 (6), 534-539). In this study, we further combined glycochemistry and self-assembly strategy by introducing glycosyltransferase as the trigger, which constructs another glycosidic bonds and another carbohydrate building blocks in situ. Herein, we propose to utilize glycosyltransferase to induce the morphology transition of glycopeptide assemblies in the process of glycosidic bonds construction, which has never been reported in literature. This strategy provides us an alternative tool to construct proteoglycan-mimicking polymeric materials and deepens our understanding on the natural process of proteoglycan construction better in the future.