Novel QSAR Approach for a Regression Model of Clearance That Combines DeepSnap-Deep Learning and Conventional Machine Learning

ACS Omega. 2022 May 11;7(20):17055-17062. doi: 10.1021/acsomega.2c00261. eCollection 2022 May 24.

Abstract

The toxicity, absorption, distribution, metabolism, and excretion properties of some targets are difficult to predict by quantitative structure-activity relationship analysis. Therefore, there is a need for a new prediction method that performs well for these targets. The aim of this study was to develop a new regression model of rat clearance (CL). We constructed a regression model using 1545 in-house compounds for which we had rat CL data. Molecular descriptors were calculated using molecular operating environment, alvaDesc, and ADMET Predictor software. The classification model of DeepSnap and Deep Learning (DeepSnap-DL) with images of the three-dimensional chemical structures of compounds as features was constructed, and the prediction probabilities for each compound were calculated. For molecular descriptor-based methods that use molecular descriptors and conventional machine learning algorithms selected by DataRobot, the correlation coefficient (R 2) and root mean square error (RMSE) were 0.625-0.669 and 0.295-0.318, respectively. We combined molecular descriptors and prediction probability of DeepSnap-DL as features and developed a novel regression method we called the combination model. In the combination model with these two types of features and conventional algorithms selected by DataRobot, R 2 and RMSE were 0.710-0.769 and 0.247-0.278, respectively. This finding shows that the combination model performed better than molecular descriptor-based methods. Our combination model will contribute to the design of more rational compounds for drug discovery. This method may be applicable not only to rat CL but also to other pharmacokinetic and pharmacological activity and toxicity parameters; therefore, applying it to other parameters may help to accelerate drug discovery.