Azido Groups Hamper Glycan Acceptance by Carbohydrate Processing Enzymes

ACS Cent Sci. 2022 May 25;8(5):656-662. doi: 10.1021/acscentsci.1c01172. Epub 2022 May 10.

Abstract

Azido sugars have found frequent use as probes of biological systems in approaches ranging from cell surface metabolic labeling to activity-based proteomic profiling of glycosidases. However, little attention is typically paid to how well azide-substituted sugars represent the parent molecule, despite the substantial difference in size and structure of an azide compared to a hydroxyl. To quantitatively assess how well azides are accommodated, we have used glycosidases as tractable model enzyme systems reflecting what would also be expected for glycosyltransferases and other sugar binding/modifying proteins. In this vein, specificity constants have been measured for the hydrolysis of a series of azidodeoxy glucosides and N-acetylhexosaminides by a large number of glycosidases produced from expressed synthetic gene and metagenomic libraries. Azides at secondary carbons are not significantly accommodated, and thus, associated substrates are not processed, while those at primary carbons are productively recognized by only a small subset of the enzymes and often then only very poorly. Accordingly, in the absence of careful controls, results obtained with azide-modified sugars may not be representative of the situation with the natural sugar and should be interpreted with considerable caution. Azide incorporation can indeed provide a useful tool to monitor and detect glycosylation, but careful consideration should go into the selection of sites of azide substitution; such studies should not be used to quantitate glycosylation or to infer the absence of glycosylation activity.