Flame-Retardant Properties and Mechanism of Polylactic Acid-Conjugated Flame-Retardant Composites

Front Chem. 2022 May 11:10:894112. doi: 10.3389/fchem.2022.894112. eCollection 2022.

Abstract

The DOPO derivative-conjugated flame retardant 4, 4'-{1'', 4'' - phenylene - bis [amino - (10‴ - oxy -10‴-hydro-9‴-hydrogen-10‴ λ5 -phosphaphenanthrene-10''-yl)-methyl]}-diphenol (P-PPD-Ph) with two hydroxyl groups was synthesized. Polylactic acid conjugated flame-retardant composites with P-PPD-Ph were papered by using a twin-screw extruder. The flame-retardant properties of polylactic acid-conjugated flame-retardant composites were investigated. The flame-retardant properties of PLA-conjugated flame-retardant composites were characterized by the limiting oxygen index (LOI) and the vertical burning test (UL94). The results showed that the PLA-conjugated flame-retardant composites achieved a V-0 rating (UL-94, 3.2 mm) when the conjugated flame retardant was added at 5 wt%, and increase in LOI value from 22.5% to 31.4% relative to composites without added conjugated flame retardant. The flame-retardant mechanism of PLA-conjugated flame-retardant composites were further studied by TG-FTIR, the results showed that the P-PPD-Ph promoted the PLA-conjugated flame-retardant composites to decompose and also released fragments with quenching and dilution, which suggests that P-PPD-Ph for PLA-conjugated flame-retardant composites mainly play a role of the gas-phase flame retardant.

Keywords: composites; conjugated flame retardant; flame retardant performance; gas phase flame retardant; polylactic acid.