Electrochemical Construction of Edge-Contacted Metal-Semiconductor Junctions with Low Contact Barrier

Adv Mater. 2022 Aug;34(31):e2202484. doi: 10.1002/adma.202202484. Epub 2022 Jun 26.

Abstract

2D semiconductors, such as MoS2 have emerged as promising ultrathin channel materials for the further scaling of field-effect transistors (FETs). However, the contact barrier at the metal-2D semiconductor junctions still significantly limits the device's performance. By extending the application of electrochemical deposition in 2D electronics, a distinct approach is developed for constructing metal-2D semiconductor junctions in an edge-contacted configuration through the edge-guided electrodeposition of varied metals. Both high-resolution microscopic imaging and electrical transport measurements confirm the successful creation of high-quality Pd-2D MoS2 junctions in desired geometry by combining electrodeposition with lithographic patterning. FETs are fabricated on the obtained Pd-2D MoS2 junctions and it is confirmed that these junctions exhibit a reduced contact barrier of ≈20 meV and extremely low contact resistance of 290 Ω µm and thus increase the averaged mobility of MoS2 FETs to ≈108 cm2 V -1 s-1 . This approach paves a new way for the construction of metal-semiconductor junctions and also demonstrates the great potential of the electrochemical deposition technique in 2D electronics.

Keywords: 2D; electrodeposition; field-effect transistors; low contact barrier; metal-semiconductor junctions.