Novel rearrangements between different chromosomes with direct impact on the diagnosis of 5p- syndrome

Clinics (Sao Paulo). 2022 May 28:77:100045. doi: 10.1016/j.clinsp.2022.100045. eCollection 2022.

Abstract

Objectives: Copy Number Variations (CNVs) in the human genome account for common populational variations but can also be responsible for genetic syndromes depending on the affected region. Although a deletion in 5p is responsible for a syndrome with highly recognizable phenotypical features, other chromosomal abnormalities might overlap phenotypes, especially considering that most studies in 5p use traditional cytogenetic techniques and not molecular techniques.

Methods: The authors have investigated 29 patients with clinical suspicion of 5p- syndrome using Chromosomal Microarray (CMA), and have gathered information on previous tests, clinical signs, symptoms, and development of the patients.

Results: The results showed 23 pure terminal deletions, one interstitial deletion, one deletion followed by a 3 Mb duplication in 5p, three cases of 5p deletion concomitant to duplications larger than 20 Mb in chromosomes 2, 9, and 18, and one 5p deletion with a chromosome Y deletion. CMA showed relevant CNVs not typically associated with 5p- that may have contributed to the final phenotype in these patients.

Conclusions: The authors have identified three novel rearrangements between chromosomes 5 and 2 (Patient 27), 5 and 18 (Patient 11), and 5 and Y (Patient 22), with breakpoints and overlapped phenotypes that were not previously described. The authors also highlight the need for further molecular investigation using CMA, in different chromosomes beyond chromosome 5 (since those cases did not show only the typical deletion expected for the 5p- syndrome) to explain discordant chromosomal features and overlapped phenotypes to unravel the cause of the syndrome in atypical cases.

Keywords: 5p deletion; Copy number variation; Genomic rearrangements; Microarray.

MeSH terms

  • Chromosome Deletion
  • Chromosomes
  • Cri-du-Chat Syndrome* / diagnosis
  • Cri-du-Chat Syndrome* / genetics
  • Cytogenetic Analysis
  • DNA Copy Number Variations / genetics
  • Humans