Comparative performance of CDC-modified SARS-CoV-2 real-time PCR assay with four different commercial assays: laboratory-based study

Comp Clin Path. 2022;31(3):355-363. doi: 10.1007/s00580-022-03356-y. Epub 2022 May 26.

Abstract

The coronavirus infectious disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses. The pandemic has emerged as a global public health crisis, and the threat of fast-spreading of the latest variants of the coronavirus (such as omicron, delta) is rampant. Therefore, a fast and reliable diagnostic assay is needed to make the clinical decision for further treatment. The study aims to develop a Centers for Disease and Prevention (CDC)-modified qualitative real-time reverse transcriptase PCR (RT-qPCR) assay and parallel assessment of commercially available RT-qPCR assay (Altona, Seegene, BD, and GBC) to detect SARS-CoV-2. Two hundred nine samples were chosen randomly out of around two hundred thousand samples. The panel consisted of SARS-CoV-2-positive (n = 156) and SARS-CoV-2-negative (n = 52) nasopharyngeal swab specimens for a primary clinical evaluation. Furthermore, 29 positive samples were sequenced using Oxford Nanopore Minion technology. Two hundred nine patient sample data of the cycle threshold (Ct) readings for target genes of five assays are 100% sensitive for Ct values. Mean Ct values for N1, N2, RdRp, S, and E of the positive controls in CDC assay, RealStar®, Allplex, GBC, and SD Biosensor were 17.5 ± 0.49, 16.9 ± 0.51, 20 ± 0.49, 21.7 ± 0.38, and 23.1 ± 0.43, respectively. F test value shows ≥ 1, which was statistically significant. All assays showed an efficiency of < 120% and R squares were < 0.99, which is well above the required threshold value. Thus, when taking the CDC-modified assay as a gold standard, the other four assays demonstrated a p value of 0.0000, concordance at 100%, and a Kappa at 1.000. A maximum-likelihood (ML) tree was constructed and compared based on full-length SARS-CoV-2 with Wuhan isolate. These isolates are closely related to the B.1.617 lineage and reference sequences. Therefore, we conclude that all RT-PCR kits assessed in this study shall be used for routine diagnostics of COVID-19 in patients.

Supplementary information: The online version contains supplementary material available at 10.1007/s00580-022-03356-y.

Keywords: COVID-19; Commercial assays; Real-time RT-PCR; SARS-CoV-2; Whole-genome sequencing.