Facile Fabrication of Fluorine-Free, Anti-Icing, and Multifunctional Superhydrophobic Surface on Wood Substrates

Polymers (Basel). 2022 May 11;14(10):1953. doi: 10.3390/polym14101953.

Abstract

Building superhydrophobic protective layers on the wood substrates is promising in terms of endowing them with multiple functions, including water-repellent, self-cleaning, anti-icing functions. In this study, multifunctional superhydrophobic wood was successfully fabricated by introducing SiO2 sol and superhydrophobic powder (PMHOS). The SiO2 sol was prepared using tetraethoxysilane as a precursor and ethanol was used as the dispersant. The PMHOS was synthesized using poly(methylhydrogen)siloxane (PMHS) and ethanol. As a result, the obtained superhydrophobic wood had a water contact angle (WCA) of 156° and a sliding angle (SA) of 6° at room temperature. The obtained superhydrophobic wood exhibited excellent repellency toward common liquid (milk, soy sauce, juice, and coffee). The superhydrophobic layer on the wood surface also exhibited good durability after a series of mechanical damages, including finger wiping, tape peeling, knife scratching, and sandpaper abrasion. In addition, the obtained superhydrophobic wood showed excellent anti-icing properties.

Keywords: anti-icing; multifunctionality; poly(methylhydrogen)siloxane (PMHS); wettability; wood.