The Nanofibrous CaO Sorbent for CO2 Capture

Nanomaterials (Basel). 2022 May 14;12(10):1677. doi: 10.3390/nano12101677.

Abstract

The nanofibrous CaO sorbent for high-temperature CO2 capture was fabricated by the calcination of electrospun composite filaments containing calcium acetylacetonate and polyacrylonitrile as a calcium-oxide precursor and a binder polymer, respectively. The calcination was carried out in air to prevent PAN carbonization and to obtain pure CaO nanofibers. The resulting mats of CaO nanofibers with the average diameter of 130 nm were characterized by a specific surface area of 31 m2/g, a CO2-uptake capacity of 16.4 mmol/g at the carbonation temperature of 618 °C, a hardness of 1.87 MPa, and the indentation Young's modulus of 786 MPa. The low decarbonation temperature makes the fabricated sorbent promising, for example, for the calcium-looping technology of CO2 removal from the hot exhaust gases of fossil-fueled power plants.

Keywords: CO2-uptake capacity; CaO nanofibers; chemisorption; electrospinning; mechanical properties; microstructure; phase composition.