All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges

Nanomaterials (Basel). 2022 May 12;12(10):1651. doi: 10.3390/nano12101651.

Abstract

Organic-inorganic metal-halide-based hybrid perovskite solar cells (SCs) have attracted a great deal of attention from researchers around the globe with their certified power conversion efficiencies (PCEs) having now increased to 25.2%. Nevertheless, organic-inorganic hybrid halide perovskite SCs suffer the serious drawback of instability with respect to moisture and heat. However, all-inorganic perovskite SCs have emerged as promising candidates to tackle the thermal instability problem. Since the introduction of all-inorganic perovskite materials to the field of perovskite photovoltaics in 2014, a plethora of research articles has been published focusing on this research topic. The PCE of all-inorganic PSCs has climbed to a record 18.4% and research is underway to enhance this. In this review, I survey the gradual progress of all-inorganic perovskites, their material design, the fabrication of high-quality perovskite films, energetics, major challenges and schemes opening new horizons toward commercialization. Furthermore, techniques to stabilize cubically phased low-bandgap inorganic perovskites are highlighted, as this is an indispensable requirement for stable and highly efficient SCs. In addition, I explain the various energy loss mechanisms at the interface and in the bulk of perovskite and charge-selective layers, and recap previously published reports on the curtailment of charge-carrier recombination losses.

Keywords: commercialization; inorganic perovskites; operational stability; power conversion efficiency.

Publication types

  • Review

Grants and funding

This research received no external funding.