Synergistic Plant-Microbe Interactions between Endophytic Actinobacteria and Their Role in Plant Growth Promotion and Biological Control of Cotton under Salt Stress

Microorganisms. 2022 Apr 21;10(5):867. doi: 10.3390/microorganisms10050867.

Abstract

Bacterial endophytes are well-acknowledged inoculants to promote plant growth and enhance their resistance toward various pathogens and environmental stresses. In the present study, 71 endophytic strains associated with the medicinal plant Thymus roseus were screened for their plant growth promotion (PGP), and the applicability of potent strains as bioinoculant has been evaluated. Regarding PGP traits, the percentage of strains were positive for the siderophore production (84%), auxin synthesis (69%), diazotrophs (76%), phosphate solubilization (79%), and production of lytic enzymes (i.e., cellulase (64%), lipase (62%), protease (61%), chitinase (34%), and displayed antagonistic activity against Verticillium dahliae (74%) in vitro. The inoculation of strain XIEG05 and XIEG12 enhanced plant tolerance to salt stress significantly (p < 0.05) through the promotion of shoot, root development, and reduced the activities of antioxidant enzymes (SOD, POD, and CAT), compared with uninoculated controls in vivo. Furthermore, inoculation of strain XIEG57 was capable of reducing cotton disease incidence (DI) symptoms caused by V. dahliae at all tested salt concentrations. The GC-MS analysis showed that many compounds are known to have antimicrobial and antifungal activity. Our findings provide valuable information for applying strains XIEG05 and XIEG12 as bioinoculant fertilizers and biological control agent of cotton under saline soil conditions.

Keywords: Thymus roseus; Verticillium dahliae; actinobacteria; biocontrol; biofertilizer; endophytes; environmental microbiology; medicinal plants.