Multidrug-Resistant Acinetobacter baumannii in Jordan

Microorganisms. 2022 Apr 20;10(5):849. doi: 10.3390/microorganisms10050849.

Abstract

Background: Acinetobacter baumannii is a common cause of multi-drug (MDR)-resistant infections worldwide. The epidemiological and molecular characteristics of MDR-A. baumannii in Jordan is not known. Methods: A. baumannii isolates were collected from 2010 to 2020 from three tertiary hospitals in Jordan. Demographic and clinical data, isolates information, antibiotic susceptibility patterns, phenotypic, and molecular characterization of carbapenem resistance genes were performed. Results: A total of 622 A. baumannii isolates were collected during the study period. Most isolates were from males, aged 18−60 years, Jordanian, from infected wounds, and were patients in surgery or critical care units. Among patients from whom A. baumannii was isolated, associated risk factors for MDR were adults over 60, males, critically ill patients and infected wounds (OR 4.14, 2.45, 10, 7, respectively, p < 0.0001). Incidence rates from 2010 to 2015 showed a slight increase in MDR (3.75/1000 to 4.46/1000). Resistance patterns indicated high resistance for most cephalosporins, carbapenems, and fluoroquinolones, moderate resistance for trimethoprim/sulfamethoxazole and ampicillin/sulbactam, low resistance for aminoglycosides and tetracyclines, while colistin and tigecycline, have the lowest resistance rates. 76.8% of A. baumannii isolates were MDR and 99.2% were carbapenem-resistant. All isolates were positive for the OXA-51 gene (100%), 98.5% were positive for the OXA-23 gene, 26.6% for the VIM gene, while KPC and IMP genes were almost not detected (0% and 0.8% respectively). Conclusions: This is the first large, multicentric, prolonged study that provides insights into A. baumannii infections in Jordan. Attention to patients at higher risk is important for early identification. Colistin and tigecycline were the most effective antimicrobials.

Keywords: Acinetobacter baumannii; IMP; Jordan; KPC; OXA; VIM; carbapenemase; multi-drug resistance (MDR).