Low Cost Three-Dimensional Programmed Mini-Pump Used in PCR

Micromachines (Basel). 2022 May 14;13(5):772. doi: 10.3390/mi13050772.

Abstract

Programmed mini-pumps play a significant role in various fields, such as chemistry, biology, and medicine, to transport a measured volume of liquid, especially in the current detection of COVID-19 with PCR. In view of the cost of the current automatic pipetting pump being higher, which is difficult to use in a regular lab, this paper designed and assembled a three-dimensional programmed mini-pump with the common parts and components, such as PLC controller, motor, microinjector, etc. With the weighting calibration before and after pipetting operation, the error of the pipette in 10 μL (0.2%), 2 μL (1.8%), and 1 μL (5.6%) can be obtained. Besides, the contrast test between three-dimensional programmed mini-pump and manual pipette was conducted with the ORF1ab and pGEM-3Zf (+) genes in qPCR. The results proved that the custom-made three-dimensional programmed mini-pump has a stronger reproducibility compared with manual pipette (ORF1ab: 24.06 ± 0.33 vs. 23.50 ± 0.58, p = 0.1014; pGEM-3Zf (+): 11.83.06 ± 0.24 vs. 11.50 ± 0.34, p = 0.8779). These results can lay the foundation for the functional, fast, and low-cost programmed mini-pump in PCR or other applications for trace measurements.

Keywords: ORF1ab; PCR; correction method; mini-pump; pipetting accuracy.