Tensile Behaviors and Strain Hardening Mechanisms in a High-Mn Steel with Heterogeneous Microstructure

Materials (Basel). 2022 May 15;15(10):3542. doi: 10.3390/ma15103542.

Abstract

Heterogeneous structures with both heterogeneous grain structure and dual phases have been designed and obtained in a high-Mn microband-induced plasticity (MBIP) steel. The heterogeneous structures show better synergy of strength and ductility as compared to the homogeneous structures. Higher contribution of hetero-deformation induced hardening to the overall strain hardening was observed and higher density of geometrically necessary dislocations were found to be induced at various domain boundaries in the heterogeneous structures, resulting in higher extra strain hardening for the observed better tensile properties as compared to the homogeneous structures. MBIP effect is found to be still effective in the coarse austenite grains of heterogeneous structures, while the typical Taylor lattice structure and the formation of microband are not observed in the ultra-fine austenite grains of heterogeneous structures, indicating that decreasing grain size might inhibit the occurrence of microbands. High density of dislocation is also observed in the interiors of BCC grains, indicating that both phases are deformable and can accommodate plastic deformation. It is interesting to note that the deformation mechanisms are highly dependent on the phase and grain size for the present MBIP steel with heterogeneous structures.

Keywords: ductility; heterogeneous structures; microband-induced plasticity; steels; strain hardening; strengthening.