Task-Rate-Related Neural Dynamics Using Wireless EEG to Assist Diagnosis and Intervention Planning for Preschoolers with ADHD Exhibiting Heterogeneous Cognitive Proficiency

J Pers Med. 2022 Apr 30;12(5):731. doi: 10.3390/jpm12050731.

Abstract

This study used a wireless EEG system to investigate neural dynamics in preschoolers with ADHD who exhibited varying cognitive proficiency pertaining to working memory and processing speed abilities. Preschoolers with ADHD exhibiting high cognitive proficiency (ADHD-H, n = 24), those with ADHD exhibiting low cognitive proficiency (ADHD-L, n = 18), and preschoolers with typical development (TD, n = 31) underwent the Conners' Kiddie Continuous Performance Test and wireless EEG recording under different conditions (rest, slow-rate, and fast-rate task). In the slow-rate task condition, compared with the TD group, the ADHD-H group manifested higher delta and lower beta power in the central region, while the ADHD-L group manifested higher parietal delta power. In the fast-rate task condition, in the parietal region, ADHD-L manifested higher delta power than those in the other two groups (ADHD-H and TD); additionally, ADHD-L manifested higher theta as well as lower alpha and beta power than those with ADHD-H. Unlike those in the TD group, the delta power of both ADHD groups was enhanced in shifting from rest to task conditions. These findings suggest that task-rate-related neural dynamics contain specific neural biomarkers to assist clinical planning for ADHD in preschoolers with heterogeneous cognitive proficiency. The novel wireless EEG system used was convenient and highly suitable for clinical application.

Keywords: ADHD; Conners Kiddie Continuous Performance Test (K-CPT); cognitive proficiency; preschoolers; wireless electroencephalography.