Hot Water Treatment Causes Lasting Alteration to the Grapevine (Vitis vinifera L.) Mycobiome and Reduces Pathogenic Species Causing Grapevine Trunk Diseases

J Fungi (Basel). 2022 May 6;8(5):485. doi: 10.3390/jof8050485.

Abstract

The effective management of grapevine trunk diseases (GTDs) is an ongoing challenge. Hot water treatment (HWT) is an environmentally friendly and economically viable option; however, the short-term effects of HWT on grapevine (Vitis vinifera L.) health and production are not fully understood. The aim of this study was to compare the effects of HWT on plant growth and fungal community structure in nursery stock until plants were completely established in the field. We assessed eleven graft and three rootstock varieties from four local nurseries in a region of Catalonia (NE Spain) where GTDs are a serious threat. After treatment, the plants were left to grow under field conditions for two growing seasons. Metabarcoding of the ITS region was used to study the mycobiomes of plant graft unions and root collars. We also assessed the influence of plant physiological indicators in community composition. Hot water treatment caused lasting changes in GTD communities in both the root collar and graft union that were not always characterized as a reduction of GTD-related fungi. However, HWT reduced the relative abundance of some serious GTD-associated pathogens such as Cadophora luteo-olivacea in graft tissues, and Phaeomoniella chlamydospora and Neofusicoccum parvum in the root collar. Treatment had the greatest influence on the total and GTD-related fungal communities of Chardonnay and Xarel·lo, respectively. Total community variation was driven by treatment and nursery in rootstocks, whereas HWT most significantly affected the GTD community composition in R-110 rootstock. In conclusion, changes in fungal abundance were species-specific and mostly dependent on the plant tissue type; however, HWT did reduce plant biomass accumulation in the short-term.

Keywords: Vitis vinifera L.; grapevine trunk diseases; hot water treatment; metabarcoding.