Integrated Transcriptomics and Nontargeted Metabolomics Analysis Reveal Key Metabolic Pathways in Ganoderma lucidum in Response to Ethylene

J Fungi (Basel). 2022 Apr 28;8(5):456. doi: 10.3390/jof8050456.

Abstract

Ganoderic acid (GA) is an important secondary metabolite of Ganoderma lucidum with a diverse array of pharmacological properties. In this study, we found that exogenous ethylene increased the production of endogenous ethylene and ganoderic acid in G. lucidum. However, the mechanism by which ethylene is regulated remains unclear. As a result, we performed a combined transcriptomics and nontargeted metabolomics analysis to evaluate the regulatory mechanism of ethylene. A total of 4070 differentially expressed genes (1835 up-regulated and 2235 down-regulated) and 378 differentially accumulated metabolites (289 up-regulated and 89 down-regulated) were identified in all groups. The transcriptomics and nontargeted metabolomics data revealed that genes involved in the tricarboxylic acid (TCA) cycle, polyamine metabolic pathway, acetyl-CoA carboxylase (ACC) pathway, and triterpenoid metabolism were up-regulated, whereas the metabolic intermediates involved in these metabolic pathways were down-regulated. These findings imply that ethylene potentially accelerates normal glucose metabolism, hence increasing the number of intermediates available for downstream biological processes, including polyamine metabolism, ethylene synthesis pathway, and ganoderic acid biosynthesis. The findings will contribute significantly to our understanding of secondary metabolites biosynthesis in fungi.

Keywords: ACC pathway; ethylene; medical fungi; polyamine metabolism; secondary metabolite.