Investigation of Brain Function-Related Myokine Secretion by Using Contractile 3D-Engineered Muscle

Int J Mol Sci. 2022 May 20;23(10):5723. doi: 10.3390/ijms23105723.

Abstract

Brain function-related myokines, such as lactate, irisin, and cathepsin B (CTSB), are upstream factors that control brain-derived neurotrophic factor (BDNF) expression and are secreted from skeletal muscle by exercise. However, whether irisin and CTSB are secreted by muscle contraction remains controversial. Three-dimensional (3D)-engineered muscle (3D-EM) may help determine whether skeletal muscle contraction leads to the secretion of irisin and CTSB, which has never been identified with the addition of drugs in conventional 2D muscle cell cultures. We aimed to investigate the effects of electrical pulse stimulation (EPS)-evoked muscle contraction on irisin and CTSB secretion in 3D-EM. The 3D-EM, which consisted of C2C12 myoblasts and type-1 collagen gel, was allowed to differentiate for 2 weeks and divided into the control and EPS groups. EPS was applied at 13 V, 66 Hz, and 2 msec for 3 h (on: 5 s/off: 5 s). Irisin and CTSB secretion into the culture medium was measured by Western blotting. Irisin secretion was significantly increased following EPS (p < 0.05). However, there was no significant difference in CTSB secretion between the two groups. The present study suggests that irisin may be a contractile muscle-derived myokine, but CTSB is not secreted by EPS-evoked muscle contractile stimulation in 3D-EM.

Keywords: C2C12; electrical pulse stimulation; muscle contraction; myokine; tissue-engineered muscle.

MeSH terms

  • Brain / metabolism
  • Electric Stimulation
  • Fibronectins* / metabolism
  • Muscle Contraction* / physiology
  • Muscle, Skeletal / metabolism

Substances

  • Fibronectins