Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China

Int J Environ Res Public Health. 2022 May 20;19(10):6216. doi: 10.3390/ijerph19106216.

Abstract

Rapid socio-economic development has had a significant impact on land use/cover (LULC) changes, which bring great pressure to the ecological environment. LULC changes affect ecosystem services by altering the structure and function of ecosystems. It is of great significance to reveal the internal relationship between LULC changes and ecosystem service value (ESV) for the protection and restoration of ecological environments. In this study, based on the spatial and temporal evolution of ecological service values in the Manas River basin from 1980 to 2020 and considering ecological and economic benefits, we coupled the gray multi-objective optimization model (GMOP) and patch-generating land-use simulation (PLUS) model (GMOP-PLUS model) to optimize the LULC structure under three scenarios (a natural development scenario, ND; ecological priority development scenario, (EPD); and balanced ecological and economic development scenario, EED) in 2030, and analyzed the trade-offs and synergies in the relationships among the four services. We found that from 1980 to 2020, farmland and construction land expanded 2017.90 km2 and 254.27 km2, respectively, whereas the areas of grassland and unused land decreased by 1617.38 km2 and 755.86 km2, respectively. By 2030, the trend of LULC changes will be stable under the ND scenario, the area of ecological land will increase by 327.42 km2 under the EPD scenario, and the area of construction land will increase most under the EED scenario, reaching 65.01 km2. From 1980 to 2020, the ESV exhibited an upward trend in the basin. In 2030, the ESV will increase by 7.18%, 6.54%, and 6.04% under the EPD, EED, and ND scenarios, respectively. The clustering of the four services is obvious in the desert area and around the water system with "low-low synergy" and "high-high synergy"; the plain area and mountainous area are mainly "high-low trade-off" and "low-high trade-off" relationships. This paper provides a scientific reference for coordinating economic development and ecological protection in the basin. It also provides a new technical approach to address the planning of land resources in the basin.

Keywords: GMOP–PLUS coupled model; Manas River Basin; ecological service value; land use changes; trade-offs and synergies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Conservation of Natural Resources
  • Economic Development
  • Ecosystem*
  • Rivers*

Grants and funding

This research was funded by the third scientific expedition project in Xinjiang (Grant Nos. 2021xjkk0804), Xinjiang Production and Construction Corps scientific and technological break-through project (Grant Nos. 2021AB021), International cooperation and exchange project of Xinjiang production and Construction Corps (Grant Nos. 2022BC001) and the National Natural Science Foundation of China (Grant Nos. U1803244, 51969027).