Development of New Iso-Cytoplasmic Rice-Restorer Lines and New Rice Hybrids with Superior Grain Yield and Grain Quality Characteristics by Utilizing Restorers' Fertility Genes

Genes (Basel). 2022 May 1;13(5):808. doi: 10.3390/genes13050808.

Abstract

This research was carried out at the Experimental Farm of Sakha Agricultural Research Station, Sakha, Kafr El-Sheikh, Egypt, during the 2018-2020 rice-growing seasons to develop and evaluate four iso-cytoplasmic rice-restorer lines: NRL79, NRL80, NRL81, and NRL82, as well as Giza 178, with ten new hybrids in order to estimate genotypic coefficient, phenotypic coefficient, heritability in a broad sense, and advantage over Giza 178 as a check variety (control) of new restorer lines. This study also estimated combining ability, gene action, better-parent heterosis (BP), mid-parents heterosis (MP), and standard heterosis (SH) over Egyptian Hybrid one (IR69A × Giza 178) as a check hybrid (control) for grain yield, agronomic traits, and some grain quality characters in restorer lines and hybrids. The percentage of advantage over commercial-variety Giza 178 (check) was significant, and highly significant among the newly developed restorer fertility lines for all the studied traits. This indicates that the selection is a highly effective factor in improving these traits. New restorer fertility lines showed highly significant positive values over commercial restorer for grain yield; the values ranged from 51% for NRL80 to 100.4% for NRL82, respectively. Meanwhile, in regard to the grain shape of paddy rice, three lines of the promising lines showed highly significant negative desirable values compared with Giza 178; the values ranged from -7.7% for the NRL80 to -15.2% for NRL79, respectively. Based on the superiority of the new lines, the new lines can be used as new restorer fertility lines to breed promising new hybrids and new inbred rice lines or varieties. From the results of the testcross experiment, the four promising lines were identified as effective restorer fertility lines for two cytoplasmic male sterile (CMS) lines. Moreover, the six rice hybrids showed values for SH heterosis of grain yield/plant of more than 15% over the check hybrid variety, with high values of 1000-grain weight and desirable grain shape; these hybrids were G46A × NRL81 (125.1%), G46A × NRL80 (66.9%), IR69A × NRL79 (47.2%), G46A × NRL79 (24.6%), IR69A × NRL81 (23.4%), and IR69A × NRL82 (16.2%).

Keywords: Oryza sativa L.; combining ability; grain yield; heterosis; newly developed restorer lines; yield components.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Edible Grain / genetics
  • Fertility / genetics
  • Hybrid Vigor / genetics
  • Oryza* / genetics
  • Plant Breeding

Grants and funding

The current work was funded by Taif University Researchers Supporting Project number (TURSP-2020/85), Taif University, Taif, Saudi Arabia.