Hyperhomocysteinemia Increases Cortical Excitability and Aggravates Mechanical Hyperalgesia and Anxiety in a Nitroglycerine-Induced Migraine Model in Rats

Biomolecules. 2022 May 23;12(5):735. doi: 10.3390/biom12050735.

Abstract

Homocysteine is a sulfur-containing endogenous amino acid leading to neurotoxic effects at high concentrations. Population studies suggest an association between plasma homocysteine levels and the risk of migraine headaches. The aim of this study was to analyze the sensitivity of rats with prenatal hyperhomocysteinemia (hHCY) in respect of the development of behavioral correlates of headache and spreading cortical depolarization (CSD) in a migraine model induced by the administration of the nitric oxide (NO) donor nitroglycerin. Animals with hHCY were characterized by migraine-related symptoms such as mechanical hyperalgesia, high-level anxiety, photophobia, as well as an enhanced level of neuronal activity in the somatosensory cortex along with a lower threshold of CSD generation. Likewise, acute or chronic intermittent administration of nitroglycerin also induced the development of mechanical allodynia, photophobia and anxiety in control groups. However, these symptoms were more pronounced in rats with hHCY. Unlike hHCY, nitroglycerin administration did not affect the threshold of CSD generation, but like hHCY, increased the background neuronal activity in layers 2/3 and 4 of the cerebral cortex. The latter was more pronounced in animals with hHCY. Thus, the migraine profile associated with hHCY can be further exaggerated in conditions with enhanced levels of migraine triggering the gaseous transmitter NO. Our data are consistent with the view that high levels of plasma homocysteine can act as a risk factor for the development of migraine.

Keywords: allodynia; anxiety; cortical excitability; cortical spreading depression; hyperhomocysteinemia; migraine; nitroglycerine; photophobia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anxiety
  • Cortical Excitability*
  • Female
  • Homocysteine
  • Hyperalgesia / chemically induced
  • Hyperhomocysteinemia* / chemically induced
  • Hyperhomocysteinemia* / complications
  • Hyperhomocysteinemia* / metabolism
  • Migraine Disorders* / chemically induced
  • Nitroglycerin / toxicity
  • Photophobia
  • Pregnancy
  • Rats

Substances

  • Homocysteine
  • Nitroglycerin

Grants and funding

This work was supported by the Russian Science Foundation 20-15-00100.