TPT1 Supports Proliferation of Neural Stem/Progenitor Cells and Brain Tumor Initiating Cells Regulated by Macrophage Migration Inhibitory Factor (MIF)

Neurochem Res. 2022 Sep;47(9):2741-2756. doi: 10.1007/s11064-022-03629-6. Epub 2022 May 27.

Abstract

One of the key areas in stem cell research is the identification of factors capable of promoting the expansion of Neural Stem Cell/Progenitor Cells (NSPCs) and understanding their molecular mechanisms for future use in clinical settings. We previously identified Macrophage Migration Inhibitory Factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs based on in vitro functional cloning strategy and revealed that MIF can support the proliferation of human brain tumor-initiating cells (BTICs). However, the detailed downstream signaling for the functions has largely remained unknown. Thus, in the present study, we newly identified translationally-controlled tumor protein-1 (TPT1), which is expressed in the ventricular zone of mouse embryonic brain, as a downstream target of MIF signaling in mouse and human NSPCs and human BTICs. Using gene manipulation (over or downregulation of TPT1) techniques including CRISPR/Cas9-mediated heterozygous gene disruption showed that TPT1 contributed to the regulation of cell proliferation/survival in mouse NSPCs, human embryonic stem cell (hESC) derived-NSPCs, human-induced pluripotent stem cells (hiPSCs) derived-NSPCs and BTICs. Furthermore, gene silencing of TPT1 caused defects in neuronal differentiation in the NSPCs in vitro. We also identified the MIF-CHD7-TPT1-SMO signaling axis in regulating hESC-NSPCs and BTICs proliferation. Intriguingly, TPT1suppressed the miR-338 gene, which targets SMO in hESC-NSPCs and BTICs. Finally, mice with implanted BTICs infected with lentivirus-TPT1 shRNA showed a longer overall survival than control. These results also open up new avenues for the development of glioma therapies based on the TPT1 signaling pathway.

Keywords: Brain tumor initiating cells; Glioma; MIF; Neural stem/progenitor cells; TPT1; iPSCs.

MeSH terms

  • Animals
  • Brain / metabolism
  • Cell Proliferation / physiology
  • Humans
  • Intramolecular Oxidoreductases
  • Macrophage Migration-Inhibitory Factors* / genetics
  • Macrophage Migration-Inhibitory Factors* / metabolism
  • Mice
  • MicroRNAs / metabolism
  • Neoplasm Proteins / metabolism
  • Neoplastic Stem Cells* / metabolism
  • Neural Stem Cells* / metabolism
  • Tumor Protein, Translationally-Controlled 1* / genetics

Substances

  • Macrophage Migration-Inhibitory Factors
  • MicroRNAs
  • Neoplasm Proteins
  • Tpt1 protein, mouse
  • Tumor Protein, Translationally-Controlled 1
  • Intramolecular Oxidoreductases
  • Mif protein, mouse