Crisaborole Loaded Nanoemulsion Based Chitosan Gel: Formulation, Physicochemical Characterization and Wound Healing Studies

Gels. 2022 May 19;8(5):318. doi: 10.3390/gels8050318.

Abstract

The development of an effective gel capable of treating eczema remains a challenge in medicine. Because of its greater retention in the affected area, good absorption of wound exudates, and induction of cell growth, nanogel is widely investigated as a topical preparation. Chitosan gel based on nanoemulsions has received much attention for its use in wound healing. In this study, four formulae (CRB-NE1-CRB-NE4) of crisaborole-loaded nanoemulsions (CRB-NEs) were developed using lauroglycol 90 as an oil, Tween-80 as a surfactant, and transcutol-HP (THP) as a co-surfactant. The prepared NEs (CRB-NE1-CRB-NE4) were evaluated for their physicochemical properties. Based on vesicle size (64.5 ± 5.3 nm), polydispersity index (PDI) (0.202 ± 0.06), zeta potential (ZP, -36.3 ± 4.16 mV), refractive index (RI, 1.332 ± 0.03), and percent transmittance (% T, 99.8 ± 0.12) was optimized and further incorporated into chitosan (2%, w/w) polymeric gels. The CRB-NE1-loaded chitosan gel was then evaluated for its drug content, spreadability, in-vitro release, flux, wound healing, and anti-inflammatory studies. The CRB-NE1-loaded chitosan gel exhibited a flux of 0.211 mg/cm2/h, a drug release of 74.45 ± 5.4% CRB released in 24 h with a Korsmeyer-Peppas mechanism release behavior. The CRB-NE1-loaded gel exhibited promising wound healing and anti-inflammatory activities.

Keywords: anti-inflammatory activity; chitosan; flux; nanoemulsion; wound healing.