Interaction between mesenchymal stem cells and myoblasts in the context of facioscapulohumeral muscular dystrophy contributes to the disease phenotype

J Cell Physiol. 2022 Aug;237(8):3328-3337. doi: 10.1002/jcp.30789. Epub 2022 May 27.

Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disease associated with ectopic expression of the DUX4 gene in skeletal muscle. Muscle degeneration in FSHD is accompanied by muscle tissue replacement with fat and connective tissue. Expression of DUX4 in myoblasts stimulates mesenchymal stem cells (MSC) migration via the CXCR4-CXCL12 axis. MSCs participate in adipose and connective tissue formation and can contribute to fibrosis. Here we studied the interaction between myoblasts and MSCs and the consequences of this interaction in the FSHD context. We used cell motility assays and coculture of MSCs with myoblasts to study their mutual effects on cell migration, differentiation, proliferation, and extracellular matrix formation. The growth medium conditioned by FSHD myoblasts stimulated MSCs migration 1.6-fold (p < 0.04) compared to nonconditioned medium. Blocking the CXCL12-CXCR4 axis with the CXCR4 inhibitor (AMD3100) or neutralizing antibodies to CXCL12 abolished this effect. FSHD myoblasts stimulated MSC proliferation 1.5-2 times (p < 0.05) compared to control myoblasts, while the presence of MSCs impaired myoblast differentiation. Under inflammatory conditions, medium conditioned by FSHD myoblasts stimulated collagen secretion by MSCs 2.2-fold as compared to the nonconditioned medium, p < 0.03. FSHD myoblasts attract MSCs via the CXCL12-CXCR4 axis, stimulate MSC proliferation and collagen secretion by MSCs. Interaction between MSCs and FSHD myoblasts accounts for several important aspects of FSHD pathophysiology. The CXCL12-CXCR4 axis may serve as a potential target to improve the state of the diseased muscles.

Keywords: CXCL12; CXCR4; FSHD; MSCs; differentiation; fibrosis; migration; myoblasts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Movement
  • Cells, Cultured
  • Chemokine CXCL12 / metabolism
  • Homeodomain Proteins / genetics
  • Humans
  • Mesenchymal Stem Cells* / metabolism
  • Muscle, Skeletal / metabolism
  • Muscular Dystrophy, Facioscapulohumeral* / genetics
  • Muscular Dystrophy, Facioscapulohumeral* / metabolism
  • Myoblasts* / metabolism
  • Phenotype
  • Receptors, CXCR4 / metabolism

Substances

  • CXCL12 protein, human
  • CXCR4 protein, human
  • Chemokine CXCL12
  • DUX4L1 protein, human
  • Homeodomain Proteins
  • Receptors, CXCR4