Solvent-Free Synthesis of Core-Functionalised Naphthalene Diimides by Using a Vibratory Ball Mill: Suzuki, Sonogashira and Buchwald-Hartwig Reactions

Chemistry. 2022 Sep 1;28(49):e202201444. doi: 10.1002/chem.202201444. Epub 2022 Jul 13.

Abstract

Solvent-free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N'-bis(2-ethylhexyl)-2,6-dibromo-1,4,5,8-naphthalenetetracarboxylic acid (Br2 -NDI) by using Suzuki, Sonogashira and Buchwald-Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2 ) and are tolerant to air and atmospheric moisture. Furthermore, the real-world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.

Keywords: ball milling; core-functionalised naphthalene diimide; coupling reactions; green chemistry; solid-phase synthesis.