Charge-Discharge Mechanism of High-Entropy Co-Free Spinel Oxide Toward Li+ Storage Examined Using Operando Quick-Scanning X-Ray Absorption Spectroscopy

Adv Sci (Weinh). 2022 Jul;9(21):e2201219. doi: 10.1002/advs.202201219. Epub 2022 May 26.

Abstract

Transition metal high-entropy oxides (HEOs) are an attractive class of anode materials for high-performance lithium-ion batteries (LIBs). However, owing to the multiple electroactive centers of HEOs, the Li+ storage mechanism is complex and debated in the literature. In this work, operando quick-scanning X-ray absorption spectroscopy (XAS) is used to study the lithiation/delithiation mechanism of the Cobalt-free spinel (CrMnFeNiCu)3 O4 HEO. A monochromator oscillation frequency of 2 Hz is used and 240 spectra are integrated to achieve a 2 min time resolution. High-photon-flux synchrotron radiation is employed to increase the XAS sensitivity. The results indicate that the Cu2+ and Ni2+ cations are reduced to their metallic states during lithiation but their oxidation reactions are less favorable compared to the other elements upon delithiation. The Mn2+/3+ and Fe2+/3+ cations undergo two-step conversion reactions to form metallic phases, with MnO and FeO as the intermediate species, respectively. During delithiation, the oxidation of Mn occurs prior to that of Fe. The Cr3+ cations are reduced to CrO and then Cr0 during lithiation. A relatively large overpotential is required to activate the Cr reoxidation reaction. The Cr3+ cations are found after delithiation. These results can guide the material design of HEOs for improving LIB performance.

Keywords: Li-ion batteries; charge storage mechanism; high energy density; high-entropy anode; lithiation/delithiation.