Visible-Light-Regulated Controlled/Living Radical Polymerization in Miniemulsion

ACS Macro Lett. 2015 Oct 20;4(10):1139-1143. doi: 10.1021/acsmacrolett.5b00576. Epub 2015 Sep 23.

Abstract

The implementation of photopolymerization processes in aqueous dispersed systems has the potential to afford greener approaches to the preparation of polymeric materials and has motivated researchers to perform photopolymerization in emulsion. However, these previous works have employed UV irradiation to induce photodegradation of a photoinitiator in addition to specialized equipment setups, thus limiting widespread use of these approaches. In this work, we aim to remedy these drawbacks via the implementation of photoredox catalysis in the regulation of a controlled/living radical polymerization under visible light. Utilizing the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) process, we report the miniemulsion polymerization of styrene mediated by a household grade blue LED (λmax = 460 nm, 0.73 mW/cm2). The polymerization rate can be easily manipulated by light intensity and catalyst concentration. Finally, temporal control was demonstrated via ON/OFF experiments, which shows that no significant detriment is caused by prolonged interruptions to the light exposure.