Pronounced increases in nitrogen emissions and deposition due to the historic 2020 wildfires in the western U.S

Sci Total Environ. 2022 Sep 15:839:156130. doi: 10.1016/j.scitotenv.2022.156130. Epub 2022 May 21.

Abstract

Wildfire outbreaks can lead to extreme biomass burning (BB) emissions of both oxidized (e.g., nitrogen oxides; NOx = NO+NO2) and reduced form (e.g., ammonia; NH3) nitrogen (N) compounds. High N emissions are major concerns for air quality, atmospheric deposition, and consequential human and ecosystem health impacts. In this study, we use both satellite-based observations and modeling results to quantify the contribution of BB to the total emissions, and approximate the impact on total N deposition in the western U.S. Our results show that during the 2020 wildfire season of August-October, BB contributes significantly to the total emissions, with a satellite-derived fraction of NH3 to the total reactive N emissions (median ~ 40%) in the range of aircraft observations. During the peak of the western August Complex Fires in September, BB contributed to ~55% (for the contiguous U.S.) and ~ 83% (for the western U.S.) of the monthly total NOx and NH3 emissions. Overall, there is good model performance of the George Mason University-Wildfire Forecasting System (GMU-WFS) used in this work. The extreme BB emissions lead to significant contributions to the total N deposition for different ecosystems in California, with an average August - October 2020 relative increase of ~78% (from 7.1 to 12.6 kg ha-1 year-1) in deposition rate to major vegetation types (mixed forests + grasslands/shrublands/savanna) compared to the GMU-WFS simulations without BB emissions. For mixed forest types only, the average N deposition rate increases (from 6.2 to 16.9 kg ha-1 year-1) are even larger at ~173%. Such large N deposition due to extreme BB emissions are much (~6-12 times) larger than low-end critical load thresholds for major vegetation types (e.g., forests at 1.5-3 kg ha-1 year-1), and thus may result in adverse N deposition effects across larger areas of lichen communities found in California's mixed conifer forests.

Keywords: 2020 U.S. Wildfires; Biomass burning emissions; George Mason University-Wildfire Forecast System; Nitrogen deposition; Nitrogen emissions; WRF-CMAQ model.

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • Ecosystem
  • Humans
  • Nitrogen / analysis
  • United States
  • Wildfires*

Substances

  • Air Pollutants
  • Nitrogen