Heart rate variability as a function of menopausal status, menstrual cycle phase, and estradiol level

Physiol Rep. 2022 May;10(10):e15298. doi: 10.14814/phy2.15298.

Abstract

Low estradiol status is associated with increased cardiovascular risk. We sought to determine the association between heart rate variability (HRV), a marker of cardiovascular risk, at baseline and in response to stressor as a function of menopausal status, menstrual cycle phase and estradiol level. Forty-one healthy women (13 postmenopausal, 28 premenopausal) were studied. Eleven premenopausal women were additionally studied in the high and low estradiol phases of the menstrual cycle. HRV was calculated by spectral power analysis (low Frequency (LF), high frequency (HF) and LF:HF) at baseline and in response to graded Angiotensin II (AngII) infusion. The primary outcomes were differences in HRV at baseline and in response to AngII. Compared to premenopausal women in the low estradiol phase, postmenopausal women demonstrated lower baseline LF (p = 0.01) and HF (p < 0.001) measures, which were not significant after adjustment for age and BMI. In response to AngII, a decrease in cardioprotective HRV (ΔHF = -0.43 ± 0.46 ln ms2 , p = 0.005 vs. baseline) was observed in postmenopausal women versus premenopausal women. Baseline HRV parameters did not differ by menstrual phase in premenopausal women. During the low estradiol phase, no differences were observed in the HRV response to AngII challenge. In contrast, women in the high estradiol phase were unable to maintain HRV (ΔLF = -0.07 ± 0.46 ln ms2 , p = 0.048 response vs. baseline, ΔHF = -0.33 ± 0.74 ln ms2, p = 0.048 response vs. baseline). No association was observed between any measure of HRV and estradiol level. Menopausal status and the high estradiol phase in premenopausal women were associated with reduced HRV, a marker of cardiovascular risk. Understanding the role of estradiol in the modulation of cardiac autonomic tone may help guide risk reduction strategies in women.

Keywords: Estrogen; Menopause; female; heart rate variability; menstrual cycle; women.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II
  • Autonomic Nervous System* / physiology
  • Estradiol
  • Female
  • Heart Rate / physiology
  • Humans
  • Menopause
  • Menstrual Cycle* / physiology

Substances

  • Angiotensin II
  • Estradiol

Grants and funding