Cyclopolymerization To Synthesize Conjugated Polymers Containing Meldrum's Acid as a Precursor for Ketene Functionality

ACS Macro Lett. 2012 Aug 21;1(8):1090-1093. doi: 10.1021/mz300250b. Epub 2012 Aug 13.

Abstract

Recently, the importance of Meldrum's acid has been reinvestigated because it serves as a great precursor for ketene generation by thermolysis. In this study, we synthesized conjugated polymers containing Meldrum's acid via controlled cyclopolymerization using a third-generation Grubbs catalyst. To avoid the solubility issue, copolymerization with soluble monomers was successfully used to provide various random and block copolymers containing Meldrum's acid in the conjugated backbone. Interestingly, when a polyacetylene derivative containing Meldrum's acid was incorporated into the second block of the diblock copolymers, highly stable core-shell supramolecules spontaneously formed during the polymerization via in situ nanoparticlization of conjugated polymer. This direct fabrication of nanostructures without requiring any post-treatments was due to the strong π-π interactions and the insolubility of the polyacetylene segment leading to the formation of core in situ. Moreover, thermolysis of Meldrum's acid to generate ketene in the conjugated polymer core was monitored by IR, and its consecutive cycloaddition to afford the cross-linked core improved the stability of the supramolecules.