An animal derivative-free medium enhances Lactobacillus johnsonii LJO02 supernatant selective efficacy against the methicillin (oxacillin)-resistant Staphylococcus aureus virulence through key-metabolites

Sci Rep. 2022 May 23;12(1):8666. doi: 10.1038/s41598-022-12718-z.

Abstract

The spread of multidrug-resistant bacteria, such as the skin commensal Staphylococcus aureus, is a worldwide health challenge; new methods to counteract opportunistic pathogen growth and virulence are urgent. We compared the activity of Lacticaseibacillus rhamnosus LR06 (DSM 21981) and Lactobacillus johnsonii LJO02 (DSM 33828) cell-free supernatants (CFSs) produced in the conventional animal derivative-based MRS medium and an innovative animal derivative-free broth (TIL) versus the MDR S. aureus (ATCC 43300). CFS influence was assessed towards the viability, metabolic activity, and ability to form biofilm of the MDR strain through optical density, alamarBlue assay, and crystal violet staining; their content in short-chain fatty acids, lactic acid, and proteins was analysed via high-resolution mass spectrometry and gas chromatography. All CFSs reduce viable and metabolically active S. aureus, being TIL more efficient compared to MRS in stimulating lactic acid bacteria metabolism and decreasing S. aureus biofilm formation. Particularly, the CFS from LJO02 grown in TIL has the best efficacy, revealing a high amount of lactic acid and 59 peculiar proteins; its effectiveness is partially maintained upon trypsin and proteinase K treatments, but not by pepsin and pH basification. Therefore, antagonistic CFSs may represent a strategic prevention approach, with bacteriotherapeutic and bio-repair potential.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Biofilms
  • Lactic Acid
  • Lactobacillus johnsonii*
  • Methicillin
  • Methicillin-Resistant Staphylococcus aureus*
  • Microbial Sensitivity Tests
  • Oxacillin
  • Staphylococcus aureus
  • Virulence

Substances

  • Anti-Bacterial Agents
  • Lactic Acid
  • Methicillin
  • Oxacillin